Search results for "Minimum free energy"
showing 3 items of 3 documents
Mapping the network of pathways of CO diffusion in myoglobin.
2010
The pathways of diffusion of a CO molecule inside a myoglobin protein and toward the solvent are investigated. Specifically, the three-dimensional potential of mean force (PMF or free energy) of the CO molecule position inside the protein is calculated by using the single-sweep method in concert with fully resolved atomistic simulations in explicit solvent. The results are interpreted under the assumption that the diffusion of the ligand can be modeled as a navigation on the PMF in which the ligand hops between the PMF local minima following the minimum free energy paths (MFEPs) with rates set by the free energy barriers that need to be crossed. Here, all the local minima of the PMF, the MF…
Unraveling the SARS-CoV-2 Main Protease Mechanism Using Multiscale Methods
2020
We present a detailed theoretical analysis of the reaction mechanism of proteolysis catalyzed by the main protease of SARS-CoV-2. Using multiscale simulation methods, we have characterized the interactions established by a peptidic substrate in the active site, and then we have explored the free energy landscape associated with the acylation and deacylation steps of the proteolysis reaction, characterizing the transition states of the process. Our mechanistic proposals can explain most of the experimental observations made on the highly similar ortholog protease of SARS-CoV. We point to some key interactions that may facilitate the acylation process and thus can be crucial in the design of …
Multiscale Simulations of SARS-CoV-2 3CL Protease Inhibition with Aldehyde Derivatives. Role of Protein and Inhibitor Conformational Changes in the R…
2021
We here investigate the mechanism of SARS-CoV-2 3CL protease inhibition by one of the most promising families of inhibitors, those containing an aldehyde group as a warhead. These compounds are covalent inhibitors that inactivate the protease, forming a stable hemithioacetal complex. Inhibitor 11a is a potent inhibitor that has been already tested in vitro and in animals. Using a combination of classical and QM/MM simulations, we determined the binding mode of the inhibitor into the active site and the preferred rotameric state of the catalytic histidine. In the noncovalent complex, the aldehyde group is accommodated into the oxyanion hole formed by the NH main-chain groups of residues 143 …